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ABSTRACT There is increasing recognition that stochas-
tic processes regulate highly predictable patterns of gene
expression in developing organisms, but the implications of
stochastic gene expression for understanding haploinsuffi-
ciency remain largely unexplored. We have used simulations
of stochastic gene expression to illustrate that gene copy
number and expression deactivation rates are important
variables in achieving predictable outcomes. In gene expres-
sion systems with non-zero expression deactivation rates,
diploid systems had a higher probability of uninterrupted
gene expression than haploid systems and were more success-
ful at maintaining gene product above a very low threshold.
Systems with relatively rapid expression deactivation rates
(unstable gene expression) had more predictable responses to
a gradient of inducer than systems with slow or zero expres-
sion deactivation rates (stable gene expression), and diploid
systems were more predictable than haploid, with or without
dosage compensation. We suggest that null mutations of a
single allele in a diploid organism could decrease the prob-
ability of gene expression and present the hypothesis that
some haploinsufficiency syndromes might result from an
increased susceptibility to stochastic delays of gene initiation
or interruptions of gene expression.

Haploinsufficiency refers to a phenotype associated with the
inactivation of a single allele in a diploid organism. A common
notion of haploinsufficiency is that the phenotype reflects a
requirement for .50% of the diploid level of gene product.
For example, a leading medical textbook defines haploinsuf-
ficiency as ‘‘meaning that a half-normal amount of gene
product is insufficient to maintain a normal phenotype (i.e.,
the process is sensitive to reduced dosage)’’ (ref. 1, p. 383). This
definition assumes that a cell must maintain relatively stable
levels of gene product above a half-normal threshold level and
precludes gene dosage compensation, i.e., increasing expres-
sion from the remaining allele to achieve a steady-state level
of product comparable to the diploid state.

Although the steady-state level of many gene products may
be relatively stable, there is increasing recognition that aspects
of the initial activation of gene expression are probabilistic, or
stochastic (2–12). Therefore, the highly predictable patterns of
gene expression in multicellular organisms are achieved by a
system that has probabilistic features. We have used a minimal
model of stochastic gene expression to illustrate that gene copy
number and expression off-rates can be critical variables in
achieving predictable outcomes. We present the hypothesis
that some haploinsufficiency diseases result from an increased
susceptibility to stochastic delays of gene initiation or inter-
ruptions of gene expression, events that are normally buffered

by increased gene copy number and that are relatively insen-
sitive to dosage compensation.

METHODS

The simulations in this analysis are presented in nondimen-
sional form. Temporal properties were scaled relative to the
product half time, Tp. The activation rate constant, ka, was
chosen such that the average time required for gene activation
was one-fourth of the product lifetime (Ta 5 Tpy4). For
example, if the product half-life were 1 h, the time for
half-maximal gene activation would be 15 min; if the product
half-life were 2 h, the half-time of activation would be 30 min,
etc.

Although times, rates, and concentrations have been nor-
malized for the sake of generality, the following actual param-
eter values were used for simulations. The half-time, Tp, for
the first-order degradation of product, P, was 4 h with a
corresponding rate constant of kp 5 4.8 3 1025 s21. Except for
models of stable expression (i.e., kd 5 0), ka 5 kd 5 2 3 1024

s21 for ‘‘slow’’ kinetics or was 10-fold faster at 2 3 1023 s21 for
‘‘fast’’ kinetics. The uncompensated single-gene expression
rate was Jp 5 24 fMys. P and S concentrations were normalized
to their Michaelis–Menten constants (1.0 nM) and were
expressed in units of P (uP) and S (uS).

Simulations were performed by using a prerelease version
2.0 of KINECYTE biological modeling software (RainTown,
Seattle) for the MacOS. KINECYTE solves the underlying
differential equations by using fourth-order Runge–Kutta
integration adapted from Press et al. (32) with a fixed inte-
gration step-size of Tpy20 to accommodate stochastic gene
expression. Halving the integration step-size to Tpy40 had no
significant effect on integration accuracy. For stochastic gene
expression, random intervals for activeyinactive transitions
were based on first-order reaction rate constants and a pseudo-
random integer number generator to determine the probability
during each integration interval according to an exponentially
distributed interval histogram (13).

RESULTS

Stochastic Activation of Stable Genes. The basic model of
gene expression, product accumulation, and product degrada-
tion is shown in Fig. 1A. As in similar models of stochastic gene
expression (9), we consider a gene to switch randomly between
inactive (G) and active (G*) states according to first-order
reaction kinetics where ka is the activation rate constant (with
a corresponding half-time of activation, Ta 5 log2yka) and kd
(with corresponding Td) is the deactivation rate constant that
determines how long a gene dwells in the active state. When
active, each gene expresses a product (P) at a rate Jp. The
product is degraded by a first-order process with a rateThe publication costs of this article were defrayed in part by page charge
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constant and half-time of kp and Tp, respectively. Although
there are many variables that could affect product stability—
e.g., mRNA half-life, translation efficiency, product compart-
mentalization and processing, and protein half-life—we have
collapsed the production and degradation kinetics of both
RNA and protein into a single product pool and have kept this
variable constant so that we can explore the properties of
expression kinetics.

If a pair of genes, G1 and G2, representing two alleles of a
gene in a diploid cell are initially inactive and then are induced
to initiate expression, each gene will initiate independently
with an average latency of Ta. In Fig. 1B, the stochastic nature
of activation was evident as a randomly staggered activation of
G2 first and then G1. In this case, the activation rate constant
was set to be 43 the product degradation rate constant (such
that Ta 5 Tpy4), and the deactivation rate constant was set at
zero (kd 5 0). Because expression would persist continuously
after initiation, we refer to this as ‘‘stable’’ expression kinetics.
Once activated, such stable genes do not deactivate, and
product P accumulates from an initial level of zero to reach a
steady-state level of 0.5 uP. In cases where only a single gene
actively expressed product the steady level was 0.25 uP because
of a 50% decline in total expression rate (simulation not
shown).

Unstable Genes Produce Expression Noise. If the gene
deactivation rate constant was greater than zero (kd . 0), gene
expression was intermittent, or ‘‘unstable,’’ resulting in ran-
dom fluctuations in the amount of product. This is evident in
Fig. 1C, where deactivation and activation rate constants were
set to be equal (i.e., Ta 5 Td 5 Tpy4; referred to below as
‘‘slow-unstable’’ expression kinetics). In this simulation, the
expression rate Jp was doubled to compensate for the fact that
expression was active only half of the time [i.e., the dwell time
for active expression is Tay(Ta 1 Td)]. In contrast to the stable
gene expression modeled in Fig. 1B, product levels randomly
fluctuated around a mean value of 0.5 uP with excursions to
higher and lower product levels, as seen in the amplitude
histogram to the right of the simulation panel. (The range of
product in this simulation was from '0.25 to 0.75 uP). In a
biological context, this would represent the fluctuation around
a mean value of the product level in a cell with a variance
determined by the relation of the expression kinetics to the
product half-life.

FIG. 1. A stochastic model of gene expression. (A) This minimal
model of stochastic gene expression kinetics consists of a pool of
product, P, and two identical genes (indicated by brackets and the
subscript 2). P is degraded according to first-order kinetics with a half
time, Tp. (For a first-order process, the rate constant corresponding
to a half time, T, is k 5 log2yT.) Each gene functions independently
of the other and can be inactive (G) or active (G*). Each active gene
expresses P at a rate Jp (in nMys, for instance) so that, if two genes
are active, then the net rate of P-synthesis is twice Jp. Genes switch

spontaneously between active and inactive state according to first-
order kinetics with an activation half time of Ta and a deactivation half
time of Td (and corresponding rate constants, ka and kd). (B) Both
genes (G1 and G2) are initially inactive and then are allowed to
activate (as indicated by the black bars at the top) independently and
randomly with a half time, Ta, that is 1y4 the half time of product
degradation (i.e., Ta 5 Tpy4). In this simulation, the deactivation rate
(kd) was 0 and expression was stable after activation. (C) The
deactivation half time was set to match the activation half time used
in A (i.e., Td 5 Ta 5 Tpy4) so that, in the steady state, each gene is
active on average 50% of the time [Tay(Ta 1 Td)]. Jp was doubled
from its value in B to maintain an average steady-state P level of 0.5.
Stochastic activation and deactivation events for each gene (indicated
by the intermittent black lines) produced a ‘‘noisy’’ pattern of product
accumulation and depletion. To the right, an amplitude histogram
(accumulated in the steady state for a period of 250 Tp) shows the
dispersion, or variance, of the product accumulated over time, i.e., the
expression noise. (D) Activation and deactivation kinetics that were
103 faster than in A (i.e., Ta 5 Td 5 Tpy40, or fast-unstable kinetics)
created such brief active and inactive periods that the product level
changed only slightly. This markedly reduced product variance, as seen
in the decreased variance of the amplitude histogram. (E) When a
single gene synthesized product with the same kinetics as in C, the
dispersion of expression noise increased as seen by comparing the
black histogram with the white histogram taken from C. (F) When the
same overall synthesis rate was distributed among four genes, the
expression noise was reduced compared with that of two genes (C).
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Faster Expression Kinetics and Increased Gene Copy Num-
ber Reduce Expression Noise. The variance of product levels
can be reduced by accelerating the kinetics of intermittent
gene expression relative to the product half-life. In Fig. 1D,
activation and deactivation rate constants were increased by a
factor of 10 relative to their values in Fig. 1C (Ta 5 Td 5
Tpy40; referred to below as ‘‘fast-unstable’’ expression kinet-
ics). Compared with the slow-unstable kinetics (Ta 5 Td 5
Tpy4), fast-unstable kinetics maintained the same mean prod-
uct level but substantially reduced the variance around the
mean. (The range of product was from 0.40 to 0.60 uP, or
'40% of that for slow expression kinetics.) Further acceler-
ation of expression kinetics relative to product degradation
kinetics would produce extremely narrow variations in product
level that would approach the invariant level of a stable system.
Therefore, evolution could achieve relatively stable product
levels either by selecting for highly stable expression or by
selecting for unstable expression with activationydeactivation
rates that were fast relative to the product half-life.

The range of product level was also related to the number
of gene units that contributed to the product pool. For
example, when the same net expression rate used in the
two-gene model of Fig. 1C was distributed to a single gene (Fig.
1E) or to four genes (Fig. 1F), the average product level was
identical but the variance of the product level increased with
one ‘‘big’’ gene and decreased with four ‘‘small’’ genes. The
amplitude histogram for the single-gene case (Fig. 1E, the
black histogram compared with the white histogram copied
from Fig. 1B) had a range approaching 1.0 uP. The histogram
for the four-gene case (Fig. 1F, black histogram) was narrower
than for the two-gene case. Therefore, the range of product
level caused by random gene activationydeactivation kinetics
decreased both as expression kinetics became faster relative to
the product half-life and as the number of expression units
increased.

Haploinsufficiency and Expression Noise. An implication of
stochastic gene expression, therefore, is that steady-state prod-
uct levels in a cell would be expected to fluctuate around a
mean and that, although loss of one allele would result in a 50%
decrease in the average steady state product level, transient
excursions significantly below the 50% level could occur. To
illustrate this, we modeled a positively autoregulated system in
which the product, P, acted as its own expression stimulus such
that expression was irreversibly terminated if its level fell below
an autoactivation threshold (Fig. 2A). In a biological context,
the irreversible termination could represent inactivation of a
regulatory pathway or cell death caused by transient loss of an
essential factor. Although positive autoregulation drove the
system to maximum expression, random inactivation events
resulted in occasional transient declines in product level (Fig.
2B). If the threshold level necessary to maintain expression
was established well below the average expression level (Pth 5
0.05 uP, or 10% of the product level produced in the two-gene
model), then expression persisted indefinitely in the two-gene
model (Fig. 2B, upper trace and histogram). If one gene was
inactivated, the mean product level decreased by half but was
still almost 5-fold above the threshold. Occasional prolonged
lapses of expression, however, resulted in product levels below
the threshold (Fig. 2B, lower trace and histogram), a terminal
event in our model system. As expected from a stochastic
system, a histogram of survival times for the one-gene model
were distributed exponentially (Fig. 2C). Of survival times,
'63% were less than the average survival time of '20 Tp
whereas a small percentage survived as long as 100 Tp.
Because the probability of survival depends on the relative
values of the expression kinetics, the product half-life, and the
threshold value, the average survival time could range from
minutes to decades. In this regard, inactivating a single gene in
a diploid organism could result in the gradual accumulation

over the lifetime of the organism of low probability random
events affecting cell survival or function.

Instability Enhances Signal Discrimination. To achieve
relatively stable product levels, genes could use either stable
expression kinetics (kd 5 0) or unstable expression kinetics
that are fast relative to the product half-life (illustrated in Fig.
1 B and D, respectively). Because unstable gene expression
increases the susceptibility to transient declines in product
level, there might be selective pressure for highly stable gene
expression. To explore the relative properties of stable and
unstable stochastic gene expression systems, we modeled the
generation of a threshold level of product in response to
varying amounts of inducer in a fixed time period (10 Tp). In

FIG. 2. Maintenance of autoregulated gene expression is sensitive
to copy number in a stochastic manner. (A) The model of Fig. 1 was
modified to simulate simultaneous binding (with affinity Kp) of two P
molecules to a receptor that activates gene expression, and the
expression deactivation rate was decreased 10-fold (Td 5 10Tpy4) to
simulate a relatively stable gene with infrequent expression lapses. The
expression rate, Jp, was decreased to 12.2 to maintain an average
product level of '0.5 uP. Setting Kp 5 0.2 of the full-scale value of P 5
1.0 established an all-or-none activationydeactivation threshold at a
value Pth 5 0.05. (B) When two genes were active (upper trace and
histogram), P levels were maintained well above the threshold, and the
genes were expressed indefinitely. However, when one gene was
inactivated, random lapses of expression allowed P levels to fall below
the threshold level (lower trace continued as a second line, and lower
histogram). (C) Histogram of survival times for 100 trials of a
one-gene model starting with active expression and an initial P of 0.25
(the steady-state level of P for persistent expression). As expected for
a stochastic process, survival times were distributed exponentially
where '63% of trials lasted less than the average survival time of '23
Tp.
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this model, the activation rate constant was proportional to the
binding of an inducing stimulus, S, with a Michaelis–Menten
constant of Ks such that k9a 5 ka SyKsy(1 1 SyKs) (Fig. 3A).
At saturating levels of stimulus (SyKs .. 1), the system
behaved as in Fig. 1 whereas at lower values of S, the activation
of transcription was delayed and reactivation was less frequent.

In the case of stable gene expression (kd 5 0), the curve
simply reflected the probability of initiating gene expression at
a given concentration of stimulus (Fig. 3B) because initiated

expression inevitably led to the accumulation of product above
the threshold level. For stable genes, the fast kinetic model
(Ta 5 Tpy40) was approximately one log unit more sensitive
to the concentration of S than the slow kinetic model (Ta 5
Tpy4) because of the increased probability of gene activation
in the trial period, but both had similar slopes. When a Hill
function was fitted to each curve, the Hill coefficients (the
curves’ slopes at the half-maximal value on a log-log plot) were
2.0 and 2.4 for the slow-stable and fast-stable kinetics, respec-
tively.

In contrast, when unstable gene expression parameters were
used, the slow-unstable model (Ta 5 Td 5 Tpy4) had a similar
sensitivity to the stimulus as the fast-unstable model (Ta 5
Td 5 Tpy40), but the fast-unstable model generated a sub-
stantially steeper curve. The Hill coefficients were 2.4 and 7.0
for the slow-unstable and fast-unstable models, respectively. In
the unstable gene models, the increased activation kinetics of
the fast model did not result in an increased sensitivity to
stimulus because the deactivation rate also was increased. In
contrast to the stable system, where a single initiation event
leads to threshold levels of product accumulation, the unstable
system repeatedly deactivates expression and needs a series of
initiating events to attain expression periods sufficient for the
product to reach threshold. Therefore, one potential advan-
tage of unstable gene expression is the opportunity to inacti-
vate expression repeatedly and to resample the stimulus in-
tensity before a commitment event.

Haploinsufficiency and Signal Discrimination. In the con-
text of achieving a threshold level in a defined period of time,
the fast-unstable system exhibited a steeper slope than the
other simulations. In a biological context, this would reflect a
more predictable response for a cell at any point in a gradient
of inducing signal. This enhanced signal discrimination, how-
ever, was strongly influenced by gene copy number (Fig. 3C).
(In contrast to Fig. 3B, the simulations in Fig. 3C were plotted
on a linear SyKs coordinate, and the threshold level was set at
0.05 uP, or 10% of the average product level in the diploid
system at maximum stimulus.) Without dosage compensation
(solid lines in Fig. 3C), the haploid system demonstrated a
significantly decreased slope compared with the diploid system
whereas four genes yielded a steeper slope than the diploid
system.

Although the threshold level for these simulations (0.05 uP)
was below the average steady state product level produced by
a single gene (0.25 uP), some of the decrease in the haploid
slope was caused by the increased amount of time required for
a single gene to produce the threshold amount of product.
When the rate of gene expression was doubled in the haploid
system to maintain the same production rate as two active
genes (dosage compensation), the haploid system slope was
still less steep than the diploid. The failure of dosage com-
pensation in the haploid system to achieve signal discrimina-
tion comparable to the diploid system reflects the enhanced
predictability achieved by integrating independent stochastic
events.

Together, these curves illustrate that the stability of gene
expression and gene copy number are both important variables
in achieving predictable outcomes in stochastic systems. In this
regard, developmental diseases caused by a heterozygous null
mutation may be attributable to the kinetics of gene expression
at submaximal stimulus, rather than solely to decreased steady-
state product levels at maximal stimulus.

DISCUSSION

Several experimental systems have supported the stochastic
nature of gene initiation in response to an inductive signal.
When cells containing a transgene of the mouse mammary
tumor virus regulatory region driving the b-galactosidase
reporter were exposed to increasing amounts of dexametha-

FIG. 3. Gene instability increased the predictability of a threshold
response to a gradient. (A) The model of Fig. 1A was augmented so
that a stimulus, S, activated gene transcription while accumulation of
product above a threshold level (set to Pth 5 0.25 uP for B and Pth 5
0.05 uP for C) triggered the all-or-none activation of a ‘‘phenotype.’’
S was assumed to bind reversibly to a single-site receptor and activate
gene transcription according to

ka 5
SyKs

11SyKs
5 ln2yTa.

Thus, at saturating levels of S, the Ta is Tpy4 (for slow gene activation,
as in Fig. 1C) or Tpy40 (fast gene activation, as in Fig. 1D). If the
receptor is 10% occupied, then the genes will be 9.1% active and
behave as in B and C. (B) The ability of the stimulus to activate the
phenotype was assessed in 100 trials at different values of SyKs (on a
log scale) for stable and unstable, fast and slow gene transcription.
Although fast-stable transcription was more sensitive (i.e., activation
occurs at lower stimulus levels), fast-unstable gene transcription
dramatically sharpens discrimination at higher levels of SyKs. (C)
Curves on a linear SyKs scale show the percentage of times that the
threshold amount of product (0.05 uP, or 10% of the steady-state level
of product produced by the two gene fast-unstable model at saturating
stimulus) was reached in 100 simulations. Curves are shown for
simulations of one gene (triangles), two genes (circles), and four genes
(squares) without (solid lines) and with (dashed lines) dosage com-
pensation.
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sone, the population produced correspondingly increasing
amounts of b-galactosidase activity (2). The increase in activity
reflected an increasing number of cells expressing b-galacto-
sidase rather than a graded increase in each expressing cell,
indicating that the concentration of dexamethasone was pre-
dominantly effecting the probability of transgene expression.
Similarly, a b-galactosidase reporter driven by binding sites for
the inducible transcription factor NF-AT (nuclear factor of
activated T cells) that was integrated into a T cell line showed
that intermediate ranges of inducer elicited a bimodal response
in the cell population, with higher levels of inducer increasing
the percentage of b-galactosidase expressing cells (3). The
initiation of hepatocyte gene expression in response to glu-
cocorticoids also has been shown to be stochastic. Immuno-
fluorescent detection of carbamoylphosphate synthase, phos-
phoenolpyruvate carboxykinase, and arginase in cultured
hepatocytes exposed to glucocorticoid demonstrated a ran-
domly initiated expression of each of the three genes (4).
Although these studies examined the response of genes to
graded levels of inducers, other studies demonstrated that
enhancer elements increased the probability that a gene would
be expressed (6, 7) but did not modulate the level of expression
from an active template. Together, these results are consistent
with the interpretation that inducers of gene expression pre-
dominantly act by increasing the probability that a gene will be
expressed.

Although experimental evidence supports the stochastic
character of transcription initiation, very little is known about
the in vivo stability of an established transcription complex.
Theoretical considerations of reaction kinetics and protein
stability necessitate a finite off-rate for any transcription
complex, but direct measurement of in vivo transcription
deactivation rates remains technically difficult. A study of
pigment expression during melanocyte differentiation showed
a random initiation of pigment expression in an isogenic
population and also demonstrated that, at early time points of
pigment expression, some cells reverted to the nonpigmented
state, indicating a stochastic deactivation rate for pigment
expression (14). In this type of analysis, however, the long
half-life of the gene products, both RNA and protein, might
mask a higher incidence of transitions between active and
inactive expression states. In situ hybridization to nascent RNA
transcripts by using intron probes has been used to more
directly assess the stability of gene transcription. In situ
hybridization to carbamoylphosphate synthase intronic RNA
in glucocorticoid treated hepatocytes indicated that expression
was both random and intermittent, supporting a stochastic
transition between active and inactive states (5). At the globin
locus, during a period of developmental transition, transcrip-
tion of the d, g, and b globin genes appeared to be intermittent,
with estimated half-lives of gene expression that ranged from
as short as 4 min for the « gene to 45–80 min for the b gene
(15).

Recently, the stochastic nature of gene activation and prod-
uct formation in cellular regulatory networks was used to
model phenotypic variation in isogenic populations (8). In this
case, random variance between successive regulatory events
produced probabilistic outcomes that can partition isogenic
cell populations into distinct phenotypes. Although probabi-
listic processing can randomly generate different responses to
an identical signal, an intrinsic random response presents a
problem for highly predictable discrimination between similar
signals. In this regard, the importance of expression deactiva-
tion rates for gradient discrimination in stochastic signaling
systems has been analyzed in the elegant work of Ko (9, 10).
Although Ko demonstrated that increasing the deactivation
rate of a transcription unit resulted in decreased interunit
variance in expression levels when the probability of activation
was ,1, he concluded that other mechanisms would need to be
used for a relatively stable expression model to discriminate a

gradient. Our modeling illustrates that relatively unstable gene
expression systems (i.e., fast-unstable kinetics) can compen-
sate partly for the signal degradation secondary to stochastic
initiation because the system requires a series initiation events
to maintain continued expression. A consequence of de-
creased expression stability, however, was a dependence on
gene copy number to achieve andyor maintain a minimal
threshold level of product. Therefore, systems that exploit
expression instability for signal discrimination in diploid or-
ganisms would be susceptible to degraded signal discrimina-
tion in the haploid state. This was true even if the amount of
product produced from the remaining gene(s) was increased to
achieve the same average steady-state level as before gene
reduction (i.e., dosage compensation).

These findings predict that a subset of genes that generate
a response to a signaling gradient in diploid organisms should
have unstable expression kinetics during the critical period of
signal detection and that some haploinsufficiency syndromes
might be associated with mutations in this subset of genes.
Although almost nothing is known about expression instability
during development, numerous genes have been identified that
cause haploinsufficiency syndromes (16). The high represen-
tation of transcription factors and signaling molecules associ-
ated with haploinsufficiency syndromes suggests that signal
transduction during embryonic development is particularly
sensitive to gene copy number. For example, heterozygous
inactivating mutations of the transcription factor PAX6 are
associated with an aniridia syndrome (17); mutations of GLI-3
are associated with Greig cephalopolysyndactyly syndrome
(18); mutations of ZNF-141 are associated with Wolf–
Hirschhorn syndrome (19); mutations of TUPLE-1 are asso-
ciated with CATCH22 (cardiac defect, abnormal facies, thymic
hypoplasia, cleft palate, hypocalcemia, and 22q11 deletions)
(20, 21); mutations of OSF2yCBFA1 are associated with
cleidocranial dysplasia (22); mutations of SOX9 are associated
with campomelic dysplasia (23); and mutations of both SOX10
and MITF are associated with neural crest syndromes, Waar-
denburg–Hirschsprung disease and Waardenburg syndrome
type 2A, respectively (24, 25). Heterozygous deletion of the
signal transduction protein LIS-1, a member of the G-protein
family, has been shown to cause Miller–Dieker lissencephaly
syndrome (26); mutations of the RET tyrosine kinase has been
associated with Hirschsprung’s disease (27, 28); and mutations
of the notch ligand Jagged1 cause Alagille syndrome charac-
terized by liver, heart, skeleton, eye, face, and kidney devel-
opmental abnormalities (29, 30). Our modeling suggests that
some of these genes might show unstable expression kinetics
during critical developmental periods and that loss of one
allele might result in stochastic delays of gene initiation or
interruptions of gene expression.

Loss of one allele, either through germ-line or somatic
mutation, is generally viewed as a ‘‘first hit’’ that is biologically
silent until the second allele is inactivated by mutation. In
contrast, stochastic models of gene expression that incorporate
random gene deactivation, even at very low rates, predict that
intermittent deactivation of the remaining allele would tran-
siently mimic the homozygous null state. In addition, genes
that respond to inductive stimuli would have an increased
average response time. Therefore, single allele mutations
could degrade the fidelity of regulatory processes and have
profound consequences on critical aspects of cell biology—
such as cell cycle regulation, DNA synthesis and repair, or
apoptosis. Furthermore, gene redundancy could decrease the
variance in stochastic systems and could increase fidelity.

A common interpretation of haploinsufficiency is that the
sensitivity to copy number represents a requirement for .50%
of the normal diploid product level. In stochastic models of
gene expression, copy number influences the probability of
gene expression, with the variance of product level determined
by the relative rates of expression kinetics and of product
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degradation. In this regard, decreasing the copy number might
lead to a haploinsufficiency phenotype by decreasing the
probability of a critical event. Just as we suggest that devel-
opmental haploinsufficiency disease might result from sto-
chastic gene expression, it is possible that some dominantly
inherited late onset degenerative diseases result from single
allele null mutations that confer a finite lifetime risk for the
gene product to fall below a critical threshold because of
occasionally prolonged off-times of the remaining wild-type
allele. Even if the average gene off-period is short relative to
the product half-life, over the life-span of an organism, the
accumulation of low probability events could result in a
late-onset disease phenotype. As a further speculation, we
suggest that non-zero expression deactivation rates might have
evolved such that regions of the haploid genome can be
sampled early in development to eliminate embryos with
deleterious mutations in a subset of critical genes. This would
diminish the representation of serious recessive mutations in
the population and significantly save reproductive energy.
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